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ABSTRACT 

With the demands for natural gas and sources in deep sea, the ship with partially filled tanks becomes 

more and more popular. The ship motion is an external excitation for sloshing tank, and sloshing tank would 

influence ship motion in return. In this paper, fully coupled effects on ship motion and a single sloshing tank 

is discussed using our in-house CFD solver naoe-FOAM-SJTU, which is developed and based on open 

source toolbox OpenFOAM. The coupling effects are observed between waves and the box with two tanks, 

and only one tank is partially filled. Only sway motion is released to discover the relationship between 

external wave and inner tank sloshing. To avoid the box move along with wave, a spring was considered. 

The results were compared with existing experimental results, and sloshing force and moment were included.  

 

1 INTRODUCTION 

With the increasing demands for natural gas and sources in deep sea, ships with partially filled tanks 

become more and more popular. With the existence of partially filled tanks, the performance of ship motion 

is different from that without tanks. The ship motion is an external excitation for sloshing tanks, and sloshing 

tanks would influence ship motion in return. Therefore, the study for the fully coupled effects on ship motion 

and sloshing tank is necessary.  

Many studies have been done between ship motion and sloshing tanks. Rognebakke and Faltinsen [1]  

conducted two-dimensional experiments about hull section with two tanks in waves. Zhao et al [2] conducted 

model test of a 2-D FLNG section with sloshing tanks, and then applied time-domain method to study the 

coupling effect between ship motion and sloshing tanks. Nasar et al [3] carried out a 3-D experiments of 

rectangular tanks with a barge in waves. Lee et al [4] applied a newly developed Moving Particle Semi-

implicit (MPS) method to study the 2-D coupling effects of sloshing tank and ship motion. With the 

development of computer science, the implement of computational fluid dynamics (CFD) becomes essential 

for numerical simulation. Some researchers applied CFD methods on sloshing tanks to capture the violent 

flow. Lee et al [5] applied potential-viscous hybrid method to simulate the coupling effects between ship 

motion and sloshing tanks; Jiang et al [6], Li et al [7] both applied CFD methods to simulate the inner 

sloshing tanks, and potential theory to simulate the ship motion. Our group have discussed fully coupled 

effects between ship motion and sloshing tanks both in CFD methods [8][9][10]. However, the coupling 

effects discussed before were under wave conditions, the ship motion was coupled in two or more degrees of 

freedom, the coupling effects have not been studied deep enough.  

In this paper, fully coupled effects on ship motion with a single sloshing tank is discussed using our 

in-house CFD solver naoe-FOAM-SJTU, which is developed and based on open source toolbox OpenFOAM. 

This paper simulates a box-shaped hull with a partially filled single tank. Two different wave conditions are 

considered, and sloshing forces are included. In order to calculate the inner sloshing force, the function of 

calculating forces and moments on patches are added, and constant damp force is included. The details of 

inner sloshing and external exciting wave are also discussed. 
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2 NUMERICAL METHOD 

2.1 Governing Equation 

The incompressible Reynolds-Averaged Navier-Stocks equations are adopted in this paper to 

investigate the viscous flow. Using dynamic deformation mesh, the governing equations are: 
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Where U  is velocity field, gU is velocity of grid nodes; dp p   g x is dynamic pressure; 

( )eff t      is effective dynamic viscosity, in which   and t  are kinematic viscosity and eddy 

viscosity respectively. t  is obtained by k-  SST turbulence model[11]. f   is the surface tension term in 

two phases model.  

The solution of momentum and continuity equations is implemented by using the pressure-implicit 

spit operator (PISO) algorithm [12]. PISO algorithm applies mass conservation into pressure equation, thus 

when pressure equation converges, continuity error decreases. This method uses a predictor-corrector on 

solving pressure-velocity coupling, and utilizes a collocated grid method [13]. 

 

2.2 VOF Method 

The Volume of fluid (VOF) method with bounded compression techniques is applied to control 

numerical diffusion and capture the two-phase interface efficiently. The VOF transport equation is described 

below: 
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Where   is volume of fraction, indicating the relative proportion of fluid in each cell and its value is 

always between zero and one: 
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2.3 6DOF Motions  

A fully 6DOF module with bodies is implemented. Two coordinate systems are used to solve 6DOF 

equation. We describe 
1 2( , ) ( , , , , , )x x x y z    as the translation and rotation angles of the ship, 

representing motions of surge, sway, heave, roll, pitch and yaw, respectively. 
1 2( , ) ( , , , , , )v v u v w p q r  are 

the velocities in the earth-fixed coordinate system, which can be transformed to the body-fixed coordinate 

system by equations given below: 

 

1

1 1 1v J x     1

2 2 2v J x   (5) 

 
where

1J ,
2J  are transformation matrices based on Euler angle. The forces and moments are projected 

into the earth-fixed system in following way: 
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1( , , ) eF X Y Z J F     1

1( , , ) eM K M N J M      (6) 

 

2.4 Patch forces and moments  

In order to compute the sloshing forces and moments, the single body is divided into several patches. 

In present study, the single body is divided into two patches: the hull of box-shaped ship which can reveal 

external forces and moments, the inner tank which can reveal inner sloshing forces and moments. The forces 

are integrated on each patch separately, and accumulated as a whole to compute for next motion. The process 

is shown in Fig.1. 

 

 
Figure 1: The process of calculating the forces and moments of each patch 

 

2.5 Wave Generation and Damping 

The incoming regular wave is generated by imposing the boundary conditions of   and U at the inlet. 

The linear Stokes wave in deep water is applied for the wave generation. 

 

( , ) cos( )ex t a kx t    (7) 
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where   is the wave elevation;  is the wave amplitude;  is the wave number; 
0U  is the ship 

velocity;   is the natural frequency of wave; e  is the encounter frequency, in this condition, =e  . 

             

3 NUMERICAL RESULTS 

3.1 Geometry and Mesh Generation 

In order to verify the accuracy of our CFD solver, and discover the coupling effect, a box with two 

tanks in waves was considered. According to the experiments carried out by Fognebakke and Faltisen[1], the 

physical model was chosen to be a box-shaped hull section. The details of the hull and tanks are illustrated in 
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Fig.2 (a), which comes from Fognebakke and Faltisen[1]. The physical model of numerical simulation is 

shown in Fig.3. In order to obtain the external exciting forces and inner sloshing forces, the model was built 

in two patches.  

  
(a) Details of hull section, side and top view         (b) Experimental setup       

Figure 2: Details of box-shaped hull section and experimental setup. [1] 

 

   
(a) Physical model with different patches           (b) Hull                               (c) Tanks 

Figure 3: Physical model with outer patch (hull) and inner patch (tanks) 

 

Fig.4 illustrates the mesh generation of computational domain and the model. The meshes are 

generated by snappyHexMesh, an auto mesh generation utility provided by OpenFOAM. The total cell 

numbers are around 1.9 M, and the single tank requires 0.1M cells. For we only simulate one single tank, 

therefore the grids of other tank which has no fluid in it are not refined. To capture the wave, grids near free 

surface are required to be refined. Fig.4 (b) shows two small tunnels connected the LNG tanks to the external 

region, which can keep pressure inside the tanks the same to the external region and simplify the 

computations. Meanwhile, the connected tunnel makes the computation fully coupled. 

 

       
(a) Mesh of computational domain                          (b) Hull       

Figure 4: Demonstrations of meshes 

 

The filling condition of the tank and computational domain setup is shown in Fig.5. Two different 

wave conditions are chosen in present work, therefore, two computational domains are carried out. The 

computational domain of large wave length is set as -1.2m<x<1.6m, -1m<y<1m, -0.6m<z<0.4m. The sponge 

layer is included to avoid the wave reflection and keep mass conservation in computational domain. The hull 

is allowed to move in sway only, and according to experimental setup, shown in Fig.2 (b), there is a bearing 
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providing a constant force of 2.0N which acts against the motion. Therefore, we added a constant damp into 

the hull motion. The hull is excited by regular waves, the simulation conditions are shown in Table 1. In 

order to prevent the model from drifting off, a spring is included, with total stiffness 30.9N/m. 

 

   
(a) Case of large wave length        (b) Case of small wave length         (c) Filling condition     

Figure 5: Computational domain and filling condition 

 

Table 1: Computational conditions 

Case 
No. of 

tanks filled 

Filling height 

(m) 
Structural 

mass (kg) 

Wave 

height (m) 

Wave 

frequency 

(rad/s) 

1 
One 0.186m 37.01 0.03 

8.6 

2 10.8 

 

3.2 Numerical Verification 

The time history of sway motion of hull is shown in Fig. 6. The hull would drift away with wave 

without spring, thus the hull motion shows two states: transient state and steady state. The duration of 

transient state in case 1 is longer than that in case 2, for the large wave length provide more energy than that 

of small wave length. To compare with the experimental data, the sway amplitudes from steady state are 

chosen, illustrated in Table 2. It can be seen from Table 2 that the results of our current work agree well with 

the experimental results, which proves our current algorithm is reliable.  

 

  
(a) Sway motion in case 1.     (b) Sway motion in case 2. 

Figure 6: Time history of sway motion of hull 

 

Table 2: Comparison of experimental data and present work in sway motion 

Case Experiment Present work Error 

1 0.45 0.43 4.4% 

2 0.16 0.143 10.6% 

 



 

6 

3.3 Sloshing Forces and Internal Flow 

In order to figure out the influence of sloshing fluid on hull motion, the sloshing forces and the details 

of internal fluid was discussed. Fig. 7 presents the comparison between sloshing force and external exciting 

forces in steady state. It can be seen that the exciting forces have phase difference with the internal force in 

case 1, while have the same phase in case 2. And when during the steady state, the sloshing forces effects the 

excitation force, for curve of the excitation forces is not sinusoidal. The force of mooring system is also 

considered, and in both cases, the phase of mooring forces is the same with sloshing force. The mooring 

system is a spring, thus the magnitude of mooring force is reduced when the hull moves along with the 

mooring line. That means the sloshing fluid move against the hull motion. It can be observed that in case 1, 

the value of sloshing force is larger than excitation force, for the exciting wave frequency is near the natural 

frequency of the liquid in tank, the violent sloshing provides strong sloshing force.   
 

  
      (a) Forces in case 1.              (b) Forces in case 2. 

Figure 7: Time history of the horizontal sloshing force, excitation force and force of mooring line 

 

The details of inner sloshing and outer fluid are also included. Fig. 8 shows the snapshots of inside and 

outside fluid motion in case 1, while Fig. 9 shows the snapshots in case 2. In Fig. 8 and Fig.9, snapshots 

show the instantaneous position of the free surface. It appears that in both cases, there exists phase difference 

between the internal and external fluid motion. Due to the large motion and resonance between incident 

wave and liquid in tank, the liquid motion in tank of case 1 is violent. The fluid in tank climbs on the 

bulkhead and rolls over when the fluid reaches the peak. The details of motion of liquid is illustrated in 

Fig.10 (a). Divided in the middle of the tank, the fluid flows apart from the boundary line and forms two 

vortex on the bottom of the tank. The fluid near wave ward side goes up to the peak and then rolls over and 

goes down. Some of the fluid which turns over and rolls down flows on the surface of the slope, and others 

rolls into the peak of the fluid, and then flows down along the wave ward bulkhead. These roll over fluid 

once goes down to the bottom of the tank, the energy makes them to go up again far away from the bulkhead. 

Then there forms two vortex on the bottom corner. 

For case 2, the energy from the wave is small and no resonance happens in tank fluid, thus the 

sloshing in tank is not violent. Therefore, the details of inner flow in Fig 10 (b) show no vortex. The fluid 

near wave ward side goes up to climb the bulkhead, while the fluid near lee side goes down. The velocity of 

the internal fluid on top is larger than that on the bottom, thus when it begins to slosh, the top side moves fast, 

while the bottom of the fluid moves slow. And for the part of bulkhead, the fluid doesn’t flow with the 

surface part of the inner fluid due to the viscous effects, therefore the fluid in the corner of the bottom shows 

different forms during sloshing. 

 

   

Figure 8: Snapshots of motion fluid inside and outside in case 1. 
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Figure 9: Snapshots of motion fluid inside and outside in case 2. 

 

  
             (a) Vector of velocity in tank in case 1.        (b) Vector of velocity in tank in case 2. 

Figure 10: Vector of velocity of liquid in tanks. 

 

4 CONCLUSION 

In this paper, the coupling effects are discussed using our in house solver naoe-FOAM-SJTU. The 

box-shaped hull is equipped with two tanks, with only one tank partially filled. Only sway motion is 

considered. The sway motion in two different wave frequencies are compared with experimental results, and 

shows well agreement, which reveals our solver had the ability to solve the inner fluid sloshing and external 

fluid simultaneously.  

Our in house CFD solver naoe-FOAM-SJTU has added new functions to calculate the internal 

sloshing forces acting on tank. The model is departed into inner and outer parts to obtain the sloshing forces 

and external exciting forces. The results are analysed to figure out how the sloshing forces and excitation 

forces counteract each other. The sloshing forces in tanks have phase differences with external exciting 

forces when the wave frequency equals to 8.6 rad/s, while when the wave frequency equals to 10.8 rad/s, 

there exists no phase differences between sloshing forces and excitation forces. Besides, for the thickness of 

the bulkhead is small, the sloshing force influences the excitation forces to some extent. 

At last, the sloshing flow and velocity are included to observe the details of sloshing flow. For the 

wave frequency equals to 8.6 rad/s, close to natural period of inner fluid, the sloshing in tank is violent, 

shows roll over on the peak of the fluid and forms two vortex on the bottom corner of the tank; while for the 

wave frequency equals to 10.8 rad/s, the sloshing in tank is almost linear, and no vortex are observed in the 

tank. 

In the future, more wave frequencies and zero filling tank condition will be considered to find out the 

coupling effects between internal fluid and external fluid. 
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